
Life-Critical[™] Wireless Networks

Steven D. Baker, PhD Principal Engineer Welch Allyn

What is going on in the market?

- Convergence of IT with medical applications
 - CIS/EMR
 - BCMA, carts
 - Infusion pumps
 - VolP
 - Telemetry and bedside monitoring
 - Location
- Desire for better network management
- Security concerns

What are the issues?

- Limitations of current solutions (WMTS)
- Cost of isolated networks
- Performance demands for critical applications
 - Latency
 - QoS
 - Fast roaming

Why "Hospital Grade WLAN?"

- The FDA definition of a medical device includes "a component part or accessory"
- Wireless transport reliability requirement depends on safety and efficacy required by the application
 - Continuous Vital Signs Monitoring High reliability required
 - Alarms Extremely high reliability required. Interruption not acceptable

Hospital Grade vs. Enterprise Class

- Hospital Grade = Enterprise Class + Validation of proper operation for mission critical applications.
- FDA is concerned with
 - Data Integrity/Security
 - 802.11i, 802.1x, proper design, and testing
 - QoS adequate for the intended use
 - 802.11e, proper design, and testing
 - Co-Existence
 - Addressed by proper design, 802.11a, ARM, testing and controls
 - Electromagnetic Compatibility
 - Addressed by proper design and testing

Source: Draft Guidance for Industry and FDA Staff: http://www.fda.gov/cdrh/osel/guidance/1618.pdf

11073 - Responsibility

- Shared network performance is the responsibility of the <u>end user</u> (hospital)
- Hospital must ensure medical and RF wireless devices
 - Conform to specifications that satisfy QoS requirements
 - Interoperate in a satisfactory way on a shared network

IEEE 11073.0.1.1, Section 16

11073 – Specific Recommendations

- Separate patient data from general IT traffic
- Consider guest networks
- Design that considers medical data
 - Reliability
 - Priority
 - Latency/Jitter
 - Bandwidth and duty cycle
 - Load limit
- Support multiple authentication protocols

Validation

- Testing the product against the intended use
 - Examples
 - General: Sufficient BW, RF coverage, and S/N ratio to support applications
 - VoIP: Toll quality audio
 - Telemetry: 100% alarm message success, 99.5% or better waveform message success.

Validation

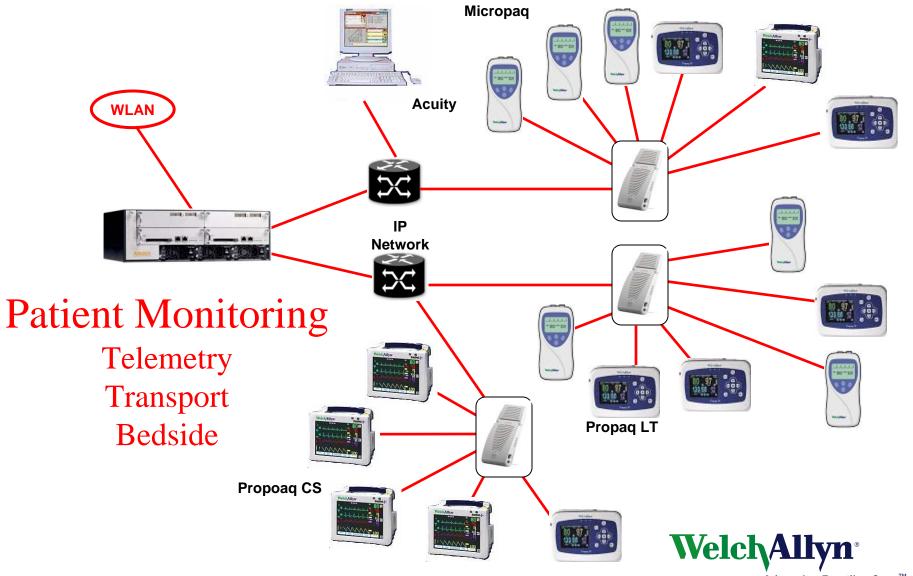
- Testing the product against the intended use
 - Examples
 - General: Sufficient BW, RF coverage, and S/N ratio to support applications
 - VoIP: Latency \leq 50 ms, RSSI \geq -65 dBm, SNR \geq 25 dB
 - Telemetry: Latency \leq 200 ms, RSSI \geq -65 dBm, SNR \geq 15 dB

Medical Wireless Applications: Technical Specs and Data Requirements

- VoIP (802.11b/g, 802.11a)
 - 50 ms, 100 kbps, streaming.
 - 1-3 calls/AP typical
- Patient monitoring (802.11a, 802.11b/g)
 - 200 ms, 30 kbps, streaming to bursting
 - 5 10 monitors/AP
- Infusion pumps (802.11b/g)
 - 30 sec, 100-400 kB (formulary), 1 kB (new Rx)
 - 100 ms, 1kB (Alerts)
 - 5-10 pumps/AP
- Carts on Wheels (CoWs) for routine vitals signs (802.11b/g)
 - 1-3 sec, 2-10 kB/patient visit
 - 1-2/AP

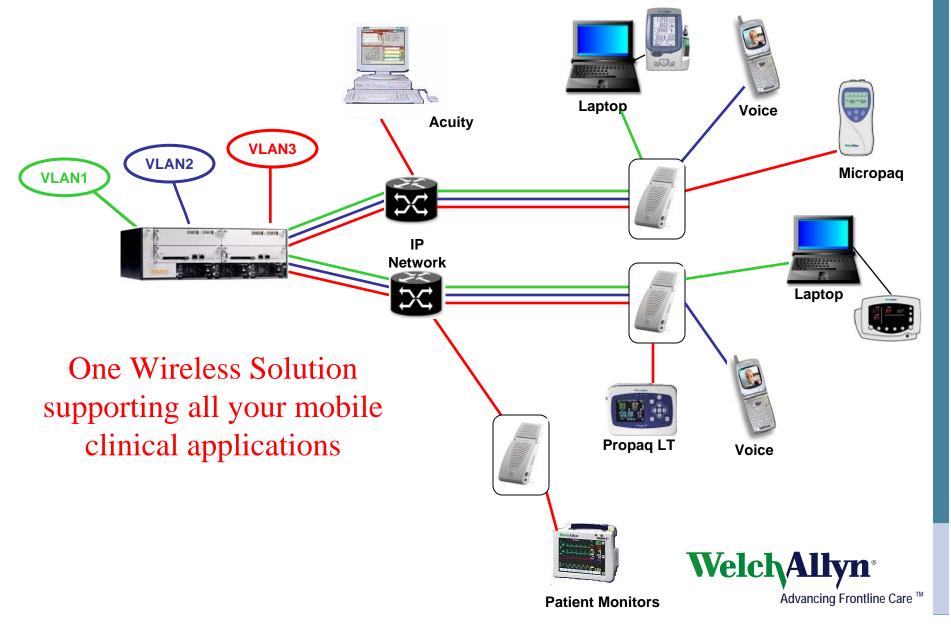
Hospital Use Case Analysis

- Use Case Analysis
 - RF shielding
 - Interesting RF emissions
 - Nurse-shift driven schedules
 - User is unaware of WLAN performance
 - Location of patients and equipment



Hospital Requirements

- Active response to changing RF environment
- ARM must be aware of all life-critical data sources
- Proper use of QoS
- Design for peaks, not average
- Redundant RF coverage and network equipment
- Roaming must be seamless for medical devices
- Early warnings, trends, and application-specific performance measures
- Vendor access to WLAN performance data
- Validation Testing



Standalone Aruba Wireless 802.11a

Advancing Frontline Care [™]

Leveraging Enterprise 802.11 a/b/g

The Welch Allyn Solution

- Secure
 - Designed a medical-grade secure 802.11 wireless adapter for patient monitoring
 - Implements 802.1x, 802.11i, 802.11e
 - Low power
 - Fast roaming while encrypted/authenticated
- Reliable
 - Welch Allyn's 802.11 implementations provide dropout rates as low as 15 ppm
- Lowest Total Cost of Ownership:
 - One enterprise-wide shared network
 - Completely standards-based

Wireless Infrastructure Costs

Network Types	Install cost per Sq Foot	Add VoIP
Shared 802.11 a/b/g Network	\$0.72	1.20
Traditional WMTS (608-614 MHz)	\$2.00	
Hybrid WMTS (1.4 GHz)	\$3.00	
WMTS Tele on distributed Antennas	\$3.00	
Distributed Antenna Systems	\$2.00	\$2.50

Conclusions

- Hospital is responsible for WiLAN performance
 - Medical equipment suppliers should provide information
- Intended use validation for medical grade network
 - If in doubt, run load tests and validate performance
- Risk mitigation
 - Redundant solutions as necessary
 - IT equipment tested against the MDD preferred
 - Test medical equipment for 2.4 GHz and 5 GHz susceptibility if 802.11 radios located within 2-m of transmitters.

Mission Critical Solutions go WIFI Cutting-Edge Applications Enable Clinical Care, Patient Safety and Enhanced Productivity

> Real Time Location Systems In Healthcare -An Ekahau Perspective –

Tuomo Rutanen VP Business Development / Ekahau Inc.

© 2000 - 2007 Ekahau, Inc. All rights reserved.

Eka-who?

"Ekahau" is the Mayan God that protects merchants and travelers.

<u>How ?</u>

Ekahau knows where they are ! Ekahau – That's How !

© 2000 - 2007 Ekahau, Inc. All rights reserved.

Location Tracking - Why ?

- Where is it now ?
- I need an available wheelchair to transport this patient to radiology...
- We need to re-schedule the OR as we are completely backed up...
- Where was the last location of this ventilator ? Last week ? Has it even been used ?
- I need to do a PM on this pump but cannot find it...
- We are short on COWs in the patient tower...
- Where is patient Simpson ? The doctor is ready to see her...
- The rental company wants their gear back......hope we can find it so we can return it

\$\$\$ Benefits of Location Tracking

- Increased staff productivity and incident response time
- Increase quality and timing of care
- Better management and control of your assets
- Reduce physical inventory costs and increase utilization
- Reduce equipment purchase and lease costs
- Improve equipment maintenance and availability
- Regulatory compliance (JCAHO,OSHA, EU etc)
- Keep the CFO & Auditors happy for auditing (SOX)

Location Tracking in Healthcare

1. Asset Tracking

- Clinical equipment
- Wheelchairs
- Beds, Stretchers
- Medical assets
- IT assets, COWs

2. Staff tracking

- Process/workflow improvement
- Scheduling, Patient transports
- Staff safety alarms

3. Patient tracking

- Process improvement through tracking patient flow
- Wanderers
- Long-term care, elderly care
- Control pandemics
- Manage disaster situations eg triage

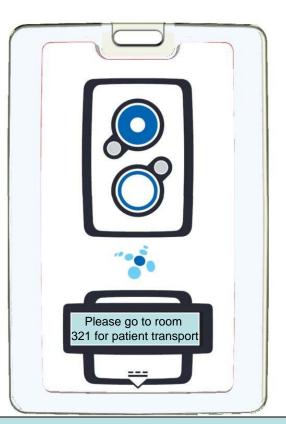
Key RTLS Economic Drivers Today

- Assets measurable ROI from reducing hard costs associated with asset purchases, leases and maintenance.
- Patients primary drivers today around patient throughput and safety.
- Caregivers driven largely by safety concerns and improved workflow.

The Ekahau-Aruba partnership can address these drivers to their maximum potential !

ROI Models – Hard vs. Soft

- Hard Cost Saving ROI Examples
 - Reduce new asset purchases by "x" factor by cutting losses
 - Improve utilization level of existing assets avoid new purchases
 - Reduce rental/lease programs
- Soft Cost Saving ROI Examples
 - Reduce time spent looking for "things" (eg "midnight round-ups")
 - Not always justifiable by some hospitals, but real value can be found easily



ROI Models Productivity Gains

- Examples of Productivity/ Throughput Gains:
 - Improve existing bed capacity via more efficient transports, patient flow and status monitoring
 - Increase patient flow in OR, ED and other key revenue producing departments
 - Improve outpatient process flows by reducing wait times and managing the process

You cannot manage what you cannot measure. RTLS gives you the ability to measure and manage !

Why Hospitals need Asset Tracking

© 2000 - 2007 Ekahau, Inc. All rights reserved.

Identification/Tracking Technologies

• **RFID - Short Read Range Identification Technology**

- Equivalent to "barcode on steroids"
- More data than barcode, easily readable, writable, inexpensive
- Standardized (EPC Global)
- Primarily an **identification resource** not for location tracking.

Active RFID - Location Tracking

- Use portals/scanners/radios as overlays to existing LAN/WLAN
- No standards/ All are proprietary systems
- Various frequencies, tags & vendors create incompatibilities
- Varying levels of performance, scalability and accuracy
- Been available for over a decade with poor adoption
- RTLS Location Tracking Leverage 802.11 coverage
 - Real-time enterprise-wide location tracking

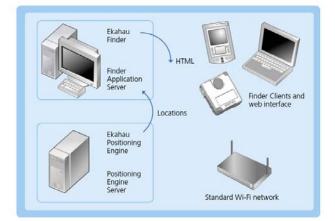
Two options:

- 802.11-based that leverage 802.11 infrastructure without the need for proprietary overlay hardware or networks
- Proprietary overlay networks or appliances over vendor specific 802.11
 networks

Why does WIFI RTLS make sense ?

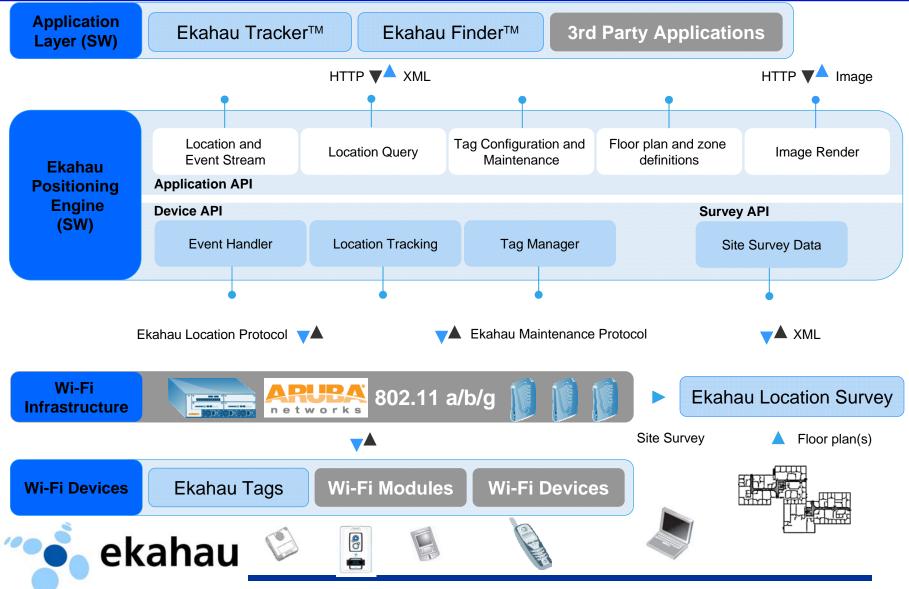
- Regardless of the type of location tracking technology being used a data back bone (WIFI or Ethernet) network is needed:
 - For transmitting tag data or information from locating infrastructure
 - To support end-user wireless terminal access for tracking applications
- WIFI provides a multi-use infrastructure for:
 - Data
 - Voice
 - Patient monitoring
 - RTLS
 - Telemetry
 - Etc.

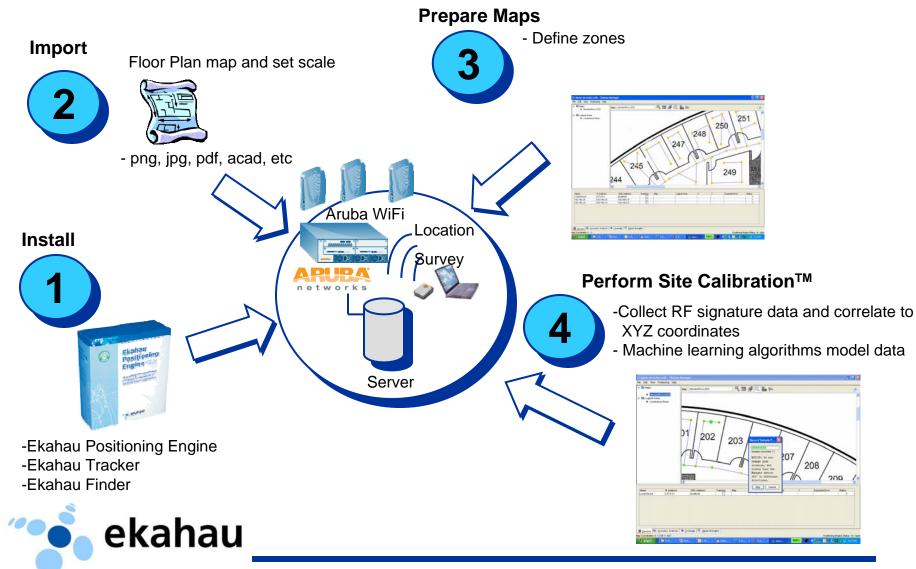
- WIFI RTLS can support multi-facility deployments cost effectively and thus enable large campus or multi-campus rollouts more cost effectively than any other technology
- WIFI is standards based, has extensive market presence and is approved for use in many places like hospitals, on airplanes, in power plants, on the manufacturing floor, etc.



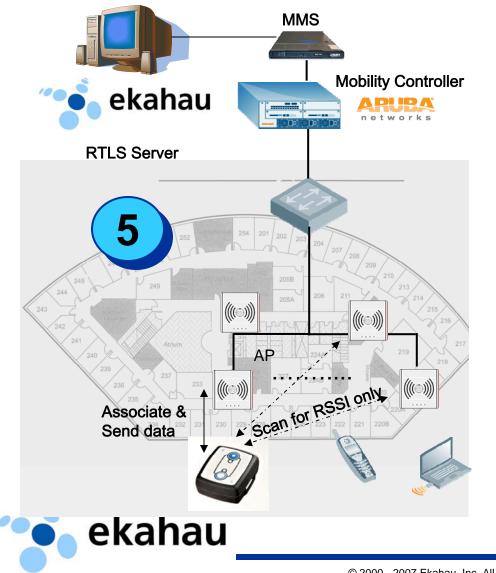
Ekahau RTLS

System components:


- Ekahau T-series WiFi Tags
 - Up to 5+ year battery, 2-way communication, tamper proof, audible and visible alarming, 2-way paging
- Ekahau Client software tag
 - Track computers, VoWIFI, PDAs, barcode/RFID readers with software client
- Ekahau Positioning Engine- patented accurate location server and algorithms:
 - 802.11 A/B/G location tracking for up to 1-2 meter resolution.
 - Centralized or distributed support
 - Scalable to tens of thousands of tags
- Ekahau Finder/Tracker enterprise application suites
 - Web-based, real-time, enterprise-wide visibility with full alerting, status and reporting capabilities.
- Ekahau API:s
 - XML, Java, Socket-based and SQL options for integration with clinical applications

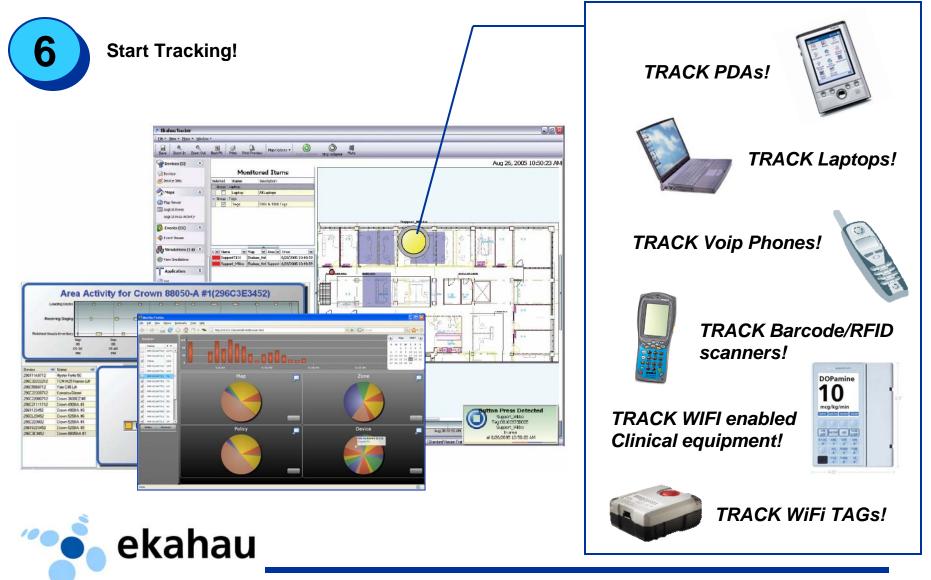


Ekahau RTLS Over Aruba


© 2000 - 2007 Ekahau, Inc. All rights reserved.

How Does It Work?

© 2000 - 2007 Ekahau, Inc. All rights reserved.


How does it work?

Ekahau RTLS:

- Site calibration factors in the environment such as walls, elevator shafts, etc. to produce better location accuracy than competitive systems.
- Sophisticated algorithms factor in changes in the environment, motion, history etc. and adapt to those changes.
- Tag association to network gives 100% visibility and manageability of 35-40 tag parameters.
- Full WIFI roaming across multiple campuses
- Standard data or voice grade network required

How Does It Work?

© 2000 - 2007 Ekahau, Inc. All rights reserved.

Why Ekahau RTLS with Aruba?

Use the 802.11 network to it's maximum potential

- WIFI RTLS does not impact the 802.11 network in any way
- No sense in building another wireless infrastructure
- RTLS can be the vehicle to drive funding of a WIFI network or network expansion.
- Simple facility survey it's like a "walk in the park"
- No need to pull cable, drill holes, move ceiling tiles, approvals, permits etc. when compared to Active RFID

Attractive payback

- Lose and buy less equipment
- Spend less time looking for equipment and reduce errors
- Improve workflow
- Increase patient and staff satisfaction

Ekahau RTLS Differentiators

- ✓ 802.11 Use 802.11 a/b/g WiFi network as the infrastructure for locating and tracking assts and people.
- Accurate, Reliable, Proven chosen by many Fortune 500 companies as their basis for location technology. Ekahau has won several bake-offs internationally.
- Capabilities/Functionality Rails, Zones, Real-time tracking, Heading, Speed, Analysis Tools, Interfaces, Application Layer, etc.
- ✓ **Fully Programmable Tags** with OTA configuration "on the fly"
- Adaptable reliable in continuously changing and challenging environments such as manufacturing, hospitals, shipping etc.
- ✓ Installation Quick set-up time for fast rollouts, reduced installation costs and quicker time to ROI. NO ADDITIONAL HARDWARE INFRASTRUCTURE
- ✓ Maintenance Minimal on-going maintenance or need for HW spares, etc. Centralized administration and management or all components.
- Cost Full system cost at a fraction of the cost of infrastructure based systems. Long term ownership cost advantage with software based system.
- ✓ **Future-proof** Same solution can be used on 802.11 A/B/G/ XYZ etc.

Thank You !!

Tuomo Rutanen Vice President Business Development Ekahau Inc Reston VA Tel: + 1 703 860 2850

© 2000 - 2007 Ekahau, Inc. All rights reserved.

A&O

